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Turbulent fountains are of major interest for many natural phenomena and industrial
applications, and can be considered as one of the canonical examples of turbulent
flows. They have been the object of extensive experimental and theoretical studies that
yielded scaling laws describing the behaviour of the fountains as a function of source
conditions (namely their Reynolds and Froude numbers). However, although such
scaling laws provide a clear understanding of the basic dynamics of the turbulent
fountains, they usually rely on more or less ad hoc dimensionless proportionality
constants that are scarcely tested against theoretical predictions. In this paper,
we use a systematic comparison between the initial and steady-state heights of
a turbulent fountain predicted by classical top-hat models and those obtained in
experiments. This shows scaling agreement between predictions and observations, but
systematic discrepancies regarding the proportionality constant. For the initial rise
of turbulent fountains, we show that quantitative agreement between top-hat models
and experiments can be achieved by taking into account two factors: (i) the reduction
of entrainment by negative buoyancy (as quantified by the Froude number), and (ii)
the fact that turbulence is not fully developed at the source at intermediate Reynolds
number. For the steady-state rise of turbulent fountains, a new model (‘confined
top-hat’) is developed to take into account the coupling between the up-flow and
the down-flow in the steady-state fountain. The model introduces three parameters,
calculated from integrals of experimental profiles, that highlight the dynamics of
turbulent entrainment between the up-flow and the down-flow, as well as the change
of buoyancy flux with height in the up-flow. The confined top-hat model for turbulent
fountains achieves good agreement between theoretical predictions and experimental
results. In particular, it predicts a systematic increase of the ratio between the initial
and steady-state heights of turbulent fountains as a function of their source Froude
number, an observation that was not handled properly in previous models.
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1. Introduction
A turbulent fountain is created when dense fluid is ejected upwards (or light fluid

downwards) into a less (more) dense environment (Turner 1966). Turbulent fountains
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are of particular importance in various natural and industrial processes such as
the replenishment of magma chambers (Campbell & Turner 1989), cumulonimbus
convection in the atmosphere (McDougall 1981), explosive volcanic eruptions
(Branney & Kokelaar 1992), refuelling compensated fuel tanks on naval vessels
(Friedman et al. 2007), waste disposal systems (Koh & Brooks 1975) or heating
and ventilation of large buildings (Baines, Turner & Campbell 1990). They also
feature amongst canonical turbulent flows (Linden 2000). Turbulent fountains have
been widely studied and their basic dynamics are well described experimentally:
they are characterized by an initial stage during which the starting jet decelerates
due both to the entrainment of surrounding fluid and to the negative buoyancy
force. When the velocity falls to zero at some initial height zm, the flow reverses
direction and falls back as an annular plume around the up-flowing fountain core.
At steady state, the turbulent interaction between the up-flow and the down-flow
reduces the height initially reached by the fountain which fluctuates around a final
mean value, zss . It has become common in the literature to characterize the dynamics
of turbulent fountains by relationships between the initial or steady-state heights and
the Reynolds (Re0 =w0R0/ν) and Froude (Fr0 = w0/

√
R0|g′

0|) numbers, where the
subscript ‘0’ denotes source values and w, R, ν and g′ = g(ρe − ρ0)/ρe are the upward
velocity, the flow radius, the kinematic viscosity and the reduced gravity with ρ0 and
ρe the density of the flow and the environment, respectively.

Different studies have focused on the behaviour of fountains with various
geometries: round (Turner 1966; McDougall 1981; Baines et al. 1990; Cresswell &
Szczepura 1993; Zhang & Baddour 1998; Bloomfield & Kerr 2000; Lin & Armfield
2000a; Philippe et al. 2005; Kaye & Hunt 2006; Williamson et al. 2008), planar (Turner
1966; Campbell & Turner 1989; Baines et al. 1990; Zhang & Baddour 1997; Hunt &
Coffey 2009) or impinging on a density interface (Cotel et al. 1997; Lin & Linden 2005;
Friedman 2006; Friedman et al. 2007; Ansong, Kyba & Sutherland 2008). In most of
the experiments investigated, the Reynolds number of the flow is high and the general
behaviour of the fountain is controlled by the source Froude number. The typical
scaling is then zm/R0 ∼ Fr0

p , where different values of p apply in different ranges
of values of Fr0. Based on theoretical analysis and laboratory experiments Kaye &
Hunt (2006) suggest that p = 2/3 for low-Froude-number fountains (Fr0 < 1) and
p = 2 for intermediate Froude number (1 <Fr0 < 10). The experiments of Zhang &
Baddour (1998) implied that p = 1.3, whereas the numerical simulations of Lin &
Armfield (2004, 2008) showed a dependence on the source Reynolds number Re0

1/4,
with p = 1 (Lin & Armfield 2004) and p = 3/2 (Lin & Armfield 2008). At high
Froude number, the analysis and the laboratory experiments of Turner (1966), Baines
et al. (1990), Zhang & Baddour (1998) and Kaye & Hunt (2006) converge to the
conclusion that zm/R0 scales with Fr0. At low source Reynolds number, the flow is
laminar and the maximum height reached by a round fountain may follow the scaling
zm/R0 ∼ Fr0Re0

n, where the value for n has been debated. Numerical simulations
of low-Froude-number laminar fountains (Fr0 < 1) suggest that n= −2/3 (Lin &
Armfield 2000b), n= 0 (Lin & Armfield 2000a) or n= −1/2 (Lin & Armfield 2003).
For higher source Froude number (Fr0 > 1), the laboratory experiments of Philippe
et al. (2005) and Williamson et al. (2008) agreed on n= 1/2.

Previous studies mainly focused on describing the different dynamical regimes of
the fountain as a function of the conditions imposed at the source, in order to
determine scaling laws for the maximum (initial) and the steady-state heights. Such
scaling laws come from theoretical models for turbulent flows, namely top-hat models
inspired by the work of Morton, Taylor & Turner (1956), that can be used to obtain
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analytical exact solutions for the rise of turbulent fountains. Based on a careful review
of experimental data from the literature, we show in this paper that the analytical
solution does not agree with those measured in the laboratory experiments. Such a
discrepancy is all the more problematic for the quantitative prediction of large-scale
flow behaviour like that of explosive volcanic fountains. These powerful natural flows
which are too dangerous to permit detailed observations require an accurate physical
description to infer exit conditions from the maximum height reached above the vent.
The aim of this paper is to discuss and eventually correct this discrepancy. For this,
we propose to take into account the effect of buoyancy on turbulent entrainment and
we develop a new top-hat model for a steady-state fountain.

2. Previous work: scaling laws and their predictions
During the initial ascent phase of a highly forced fountain, the flow behaves like

a jet and entrains surrounding fluid (Bloomfield & Kerr 2000; Kaye & Hunt 2006;
Hunt & Coffey 2009). This first rising flow can thus be modelled in the Boussinesq
approximation with the conservation equations of Morton et al. (1956):

d

dz
(WR2) = 2αeWR, (2.1)

d

dz
(W 2R2) = G′R2, (2.2)

d

dz
(G′WR2) = 0, (2.3)

where z is the distance from the source and πWR2, πW 2R2 and πG′WR2 are the
volume, momentum and buoyancy fluxes, respectively. The entrainment coefficient
αe quantifies the entrainment rate αeW . These equations are valid for self-similar
flows. Although laboratory measurements of velocity and buoyancy profiles do not
fully support this assumption at any distance from the source (Mizushina et al. 1982;
Cresswell & Szczepura 1993), this model has been successfully applied to turbulent
fountains (Bloomfield & Kerr 2000). Hunt & Kaye (2005) and Kaye & Hunt (2006)
solved for the dimensionless form of these equations and obtained the following
scaling law at large Froude number (Fr0 > 3):

zm

R0

= 0.865 α−1/2
e Fr0. (2.4)

The prediction zm/R0 ∼ Fr0 was compared successfully to experiments in Kaye &
Hunt (2006). However, the value of the proportionality constant (0.865 α−1/2

e ) has not
been thoroughly tested yet.

Figure 1 compares laboratory measurements of dimensionless maximum heights
(Zhang & Baddour 1998; Bloomfield & Kerr 2000; and the present study) with the
model of Morton et al. (1956) (defined in (2.1)–(2.3)) using αe = 0.1 as a reference
value for the entrainment coefficient (Kaye & Hunt 2006) or 0.865 α−1/2

e = 2.735 as
proportionality constant in the scaling law (2.4). The maximum heights predicted
by the model are consistent with the scaling law in terms of dependence on Fr0,
but the predictions are systematically smaller than the experimental values. In other
words, the experimental value of the effective entrainment coefficient in relation (2.4)
is smaller than the value αe = 0.1 used in the analytical solution.

The prediction of the steady-state height reached by a turbulent fountain is usually
handled by using the predictions of the initial maximum height corrected with the
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Figure 1. Dimensionless maximum rise height (zm/R0) of experimental fountains as a function
of the source Froude number compared with the theoretical predictions (solid line) using the
model of Morton et al. (1956) with αe = 0.1. �, Zhang & Baddour (1998); �, Bloomfield &
Kerr (2000); , the present study (see the Appendix). Error bars are smaller than the symbol
size.

factor zm/zss = 1.43 determined experimentally by Turner (1966). Figure 2 shows the
comparison between theoretical predictions for zss obtained using zm/zss =1.43 and zm

from relation (2.4), and laboratory measurements. Here again, although experimental
values follow the theoretical scaling, there is a large discrepancy. Such a discrepancy
may reflect a wrong estimate of zss through inappropriate use of a fixed zm/zss ratio
of 1.43, as well as the fact that 0.1 may be an inadequate value for the entrainment
coefficient αe in the model. Recent studies have shown indeed that for highly forced
fountains αe ∼ αjet , whereas for weak and very weak fountains the height reached is
independent of the choice of αe (Kaye & Hunt 2006; Hunt & Coffey 2009). We thus
propose to relax these hypotheses of fixed zm/zss and αe in a new model of turbulent
fountains.

3. Quantitative prediction of maximum (initial) height
Recent papers (Kaminski, Tait & Carazzo 2005; Carazzo, Kaminski & Tait 2006;

Papanicolaou, Papakonstantis & Christodoulou 2008) demonstrated that entrainment
in turbulent jets is reduced by negative buoyancy. Such an effect modifies the dynamics
of turbulent fountains as their specific dynamics is due to negative buoyancy. The
effect of buoyancy on entrainment can be quantified using the formalism developed
in two companion papers by Kaminski et al. (2005) and Carazzo et al. (2006). In this
model, the rate of entrainment depends on the amount and sign of the buoyancy,
and on the local shapes of the velocity, buoyancy and turbulent stress profiles. The
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Figure 2. Dimensionless steady-state height (zss/R0) of experimental fountains as a function
of the source Froude number compared with theoretical predictions (solid line) using the
model of Morton et al. (1956) with αe =0.1 and using zm/zss =1.43 as in Kaye & Hunt (2006).
�, Baines et al. (1990); �, Kaye & Hunt (2006); , the present study (see the Appendix). Error
bars are smaller than the symbol size.

resulting explicit expression for the variable entrainment coefficient is

αe =
C

2
+

(
1 − 1

A

)
Ri +

R

2

d lnA

dz
, (3.1)

where Ri = G′R/W 2 ≡ sign (G′) 1/Fr2 is the Richardson number, which is negative
in the case of fountains discussed here. Note that the Richardson number is similar
to the source parameter Γ defined by Morton (1959) but not strictly the same as it
does not involve αe. A and C are dimensionless parameters that are functions of the
shapes of the cross-stream profiles of velocity, reduced gravity and turbulent stress.
For example, in the case of Gaussian velocity and buoyancy profiles, A and C are
given by

A = 2
3
(1 + λ2), (3.2)

C = −6(1 + λ2)

∫ ∞

0

r∗ exp(−r∗2

)j (r∗) dr∗, (3.3)

where λ is the ratio of the characteristic (1/e) width of the buoyancy profile (δc) to that
of the velocity profile (δw), j is the turbulent shear stress profile and r∗ = r/δw . A and
C have been constrained at large distance from the source by various experimental
constraints (Carazzo et al. 2006; Carazzo, Kaminski & Tait 2008a). C, which
represents the fraction of the total energy flux available for entrainment (Kaminski
et al. 2005), was found to be a constant equal to 0.135, whereas A varies from 1.1 to
1.8 as a function of distance from source and of the characteristics of the jet (pure
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Figure 3. Comparison of experimental dimensionless maximum heights with the theoretical
prediction using the model of Morton et al. (1956) together with αe = 0.1 (dotted line) and
with the formalism of Kaminski et al. (2005) (solid line) for a ‘top-hat’ flow at the source. The
symbols are the same as in figure 1.

jets and negatively buoyant jets or pure plumes). In the following, we will use the
formula given in Carazzo et al. (2006) and Carazzo, Kaminski & Tait (2008b) to
compute the value of A and thus the entrainment coefficient.

Figure 3 shows the comparison of experimental data with the theoretical predictions
of the classical top-hat model (defined in (2.1)–(2.3)) together with the formalism of
variable entrainment (defined in (3.1)–(3.3)). The predictions are improved at large
Fr0 but the discrepancy at small Fr0 is not corrected. However, as it is experimentally
difficult to vary the Froude number independently of the Reynolds number, turbulent
fountains are often generated with intermediate Reynolds number at the source. It is
thus likely that turbulence is not fully developed there. In that case the velocity profile
at the nozzle may be intermediate between a Poiseuille flow and a top-hat. This will
in turn change the relationship between the mass flux and the source momentum flux
that becomes M0 = (4/3) πW 2

0 R2
0 for Poiseuille flow (Woods & Caulfield 1992).

Figure 4 shows that the experimental data are in good agreement with the theoretical
predictions of the classical top-hat model together with our formalism, suggesting
that for the most part they fall between laminar and turbulent exit conditions. For
Fr0 > 20 the fully turbulent model is satisfactory, but for lower Fr0 the model with
laminar exit conditions gives a better prediction, as expected. At intermediate Froude
number, there is a transition zone in which one would expect the momentum flux
at the source to be a function of the source geometry. For example, Mi, Nobes &
Nathan (2001) presented experimental measurements of velocity profiles in the near
field of jets issuing either from a smooth contraction pipe or from a long straight pipe.
They showed that the development of the turbulence is enhanced when the source
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Figure 4. Comparison of experimental dimensionless maximum heights with the theoretical
prediction using the model of Morton et al. (1956) together with the formalism of Kaminski
et al. (2005) for a Poiseuille flow (dashed line) and a ‘top-hat’ flow (solid line) at the source.
The symbols are the same as in figure 1.

nozzle is a smooth contraction pipe whereas the velocity profile becomes similar to
a Poiseuille flow when the pipe is straight. Note that for Fr0 < 2 the fountains are in
the hydraulic regime described in Kaye & Hunt (2006), for which the formalism of
turbulent entrainment no longer applies.

We thus conclude that the Morton et al. (1956) top-hat model provides good
quantitative predictions for the initial rise of a turbulent fountain, as long as the
effect of buoyancy on entrainment and the turbulence state at the source are taken
into account. The exit conditions of fountains should be carefully investigated when
studying the dynamics of these flows to further refine the predictions as a function of
the nozzle geometry and Reynolds number at the source.

4. Steady-state height: a new ‘confined’ top-hat model
4.1. Evolution of the steady-state height of a fountain as a function

of the Froude number

The steady-state height reached by a turbulent fountain is usually calculated by using
the prediction of the initial maximum height corrected with the factor zm/zss assumed
constant at 1.43. Although the discrepancy between theoretical predictions and
experimental data of maximum heights can be corrected once variable entrainment is
taken into account, predictions for steady-state fountains can be affected by variations
of zm/zss .

Turner (1966) presented experiments that consisted in injecting dense jets of salty
water upwards in a tank of fresh water. The results showed that the ratio of the
initial rise height to the steady-state rise height varies within narrow limits with a
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Figure 5. Ratio zm/zss as a function of the source Froude number for a set of laboratory
experiments and numerical simulations. LA04: Lin & Armfield (2004); TS, the present study
(see the Appendix); BK00, Bloomfield & Kerr (2000); B90, Baines et al. (1990) (including the
experiments of Turner 1966).

mean value of 1.43. Baines et al. (1990) extended this work up to an input Froude
number of 250 and confirmed that zm/zss ≈ 1.43. However, Bloomfield & Kerr (2000)
used a similar apparatus to generate fountains at 10< Fr0 < 70 and found the ratio
zm/zss to be 1.36 ± 0.04. For low- and very low-Froude-number fountains, numerical
solutions of Lin & Armfield (2004) show that the ratio zm/zss is close to 1. We
complemented this set of constraints by performing our own experiments using the
apparatus described in Kaminski et al. (2005) to inject jets of fresh water downwards
into a tank of salty water (details are given in the Appendix). The source Froude
numbers varied between 5 <Fr0 < 70 and the mean value of the ratio of the initial
to the final rise height over all the experiments was found to be 1.29 ± 0.02. Figure 5
summarizes the different values of zm/zss we estimated from the literature and from
our experiments and shows that this ratio systematically increases as a function of
the source Froude number. Such a variation cannot be accounted for by the above
model of a negatively buoyant turbulent starting jet and requires the modelling of the
fully developed fountain, i.e. with an up-flow and a down-flow. To our knowledge,
this systematic variation of zm/zss with Fr0 has not yet been discussed properly.

Previous studies tried to adapt the model of Morton et al. (1956) to turbulent
fountains by setting out descriptions of both the up-flow and the surrounding down-
flow at any height above the source. Such a full treatment involves many variables to
describe the different couplings between the up-flow and down-flow, related to mass
and momentum flux exchanges and to the effect of the relative buoyancy forces.

In the pioneering work of McDougall (1981) the entrainment rate of the down-flow
into the up-flow is assumed to be proportional to the relative velocity (Wu +Wd),
where the subscripts ‘u’ and ‘d ’ denote the up-flow and the down-flow as proposed by
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Morton (1962) for coaxial plumes. On the other hand, the entrainment rates from the
up-flow and from the environment into the down-flow are taken as proportional to
the down-flow velocity Wd . Two sets of conservation equations of volume, momentum
and buoyancy fluxes are written down, based on two different assumptions about how
the buoyancy forces accelerate the up-flow (either as a function of the local difference
between the up-flow and the down-flow density, or as a function of the density
difference between the up-flow and the environment). Bloomfield & Kerr (2000) later
showed that the two formulations lead to only 2.5 % of difference in the predictions
of the steady-state height. Bloomfield & Kerr (2000) proposed an alternative theory
that introduces four different formulations to estimate the steady-state height of a
turbulent fountain. The predictions of these formulations strongly depend on the
values of the entrainment coefficient between the down-flow and the environment and
on the two entrainment coefficients between the up-flow and the down-flow whose
uncertainties lead to drastic variations (up to 33 %) in the predictions of zss .

To gain better insight into the dynamics of the interaction between the up-flow
and the down-flow in a turbulent fountain, we propose a simplified model that does
not require the precise characterization of the down-flow. Using arguments of self-
similarity of the flow, we also intend to obtain a better constrained model than in
the more complete model of Bloomfield & Kerr (2000), which is somewhat difficult
to comprehend.

4.2. A confined ‘top-hat’ model

As in Kaminski et al. (2005), we first write down mass, momentum and buoyancy
conservation for a ring-shaped volume of an axisymetrical turbulent buoyant jet,
under the Boussinesq approximation and steady state,

∂

∂z
(rw) +

∂

∂r
(ru) = 0, (4.1)

∂

∂z
(rw2) +

∂

∂r
(ru w) = rg′ − ∂

∂r
(rũw̃), (4.2)

∂

∂z

(
rwg′

)
+

∂

∂r

(
rug′

)
= 0, (4.3)

where r is the distance from the axis, u the radial velocity, w the vertical velocity
and g′ the reduced gravity. All quantities relate to mean values for the ring obtained
by Reynolds averaging, and we neglect all contributions from turbulent fluctuations
in velocity and reduced gravity that are of second order. The turbulent shear stress
−ρũw̃ (which drives entrainment) is of leading order.

We then integrate these equations from r = 0 to r = δ, the boundary between the
up-flow and the down-flow. We take as boundary condition w (r = δ) = 0 as the
vertical velocity changes sign between the up-flow and the down-flow. Note that
the values of u (r = δ) = uδ , ũw̃ (r = δ) = τδ and g′ (r = δ) = g′

δ are not zero
(Cresswell & Szczepura 1993) and not known a priori. The integration yields

d

dz

∫ δ

0

rw dr = −δuδ, (4.4)

d

dz

∫ δ

0

rw2 dr =

∫ δ

0

rg′ dr − δτδ, (4.5)

d

dz

∫ δ

0

rwg′ dr = −δuδg
′
δ. (4.6)
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Some information is required on the boundary conditions at r = δ to solve these
conservation equations. One way to proceed is to replace the boundary conditions at
r = δ by integral profiles, as in Kaminski et al. (2005). To do so, we construct additional
conservation equations for quantities involving w, namely the kinetic energy of axial
motion, (w2/2), the product wg′ and w3, which all cancel at r = δ:

∂

∂z

(
rw3

)
+

∂

∂r

(
ruw2

)
= 2rwg′ − 2w

∂

∂r

(
rũw̃

)
, (4.7)

∂

∂z

(
rw2g′

)
+

∂

∂r

(
ru wg′

)
= rg′2 − g′ ∂

∂r

(
rũw̃

)
, (4.8)

∂

∂z
(rw4) +

∂

∂r

(
ruw3

)
= 3rw2g′ − 3w

∂

∂r

(
rũw̃

)
. (4.9)

The integration of the new conservation equations between r = 0 and r = δ yields

d

dz

∫ δ

0

rw3 dr =

∫ δ

0

2rwg′ dr −
∫ δ

0

2w
∂

∂r

(
rũw̃

)
dr, (4.10)

d

dz

∫ δ

0

rw2g′ dr =

∫ δ

0

rg′2 dr −
∫ δ

0

g′ ∂

∂r

(
rũw̃

)
dr, (4.11)

d

dz

∫ δ

0

rw4 dr =

∫ δ

0

3rw2g′ dr −
∫ δ

0

3w2 ∂

∂r

(
rũw̃

)
dr. (4.12)

We then use the three shape functions

w (r, z) = wm (z) f (r, z), (4.13)

g′ (r, z) = g′
m (z) h (r, z), (4.14)

ũw̃ (r, z) = 1
2
wm (z)2 j (r, z), (4.15)

which define six dimensionless integral profiles,

I1 =

∫ 1

0

r∗f (r∗, z)h(r∗, z) dr∗, (4.16)

I2 =

∫ 1

0

f (r∗, z)
∂

∂r∗ [r∗j (r∗, z)] dr∗, (4.17)

I3 =

∫ 1

0

r∗h(r∗, z)2 dr∗, (4.18)

I4 =

∫ 1

0

h(r∗, z)
∂

∂r∗ [r∗j (r∗, z)] dr∗, (4.19)

I5 =

∫ 1

0

r∗f (r∗, z)2h(r∗, z) dr∗, (4.20)

I6 =

∫ 1

0

f (r∗, z)2
∂

∂r∗ [r∗j (r∗, z)] dr∗, (4.21)

with r∗ = r/δ. Last, the fluxes are written using a top-hat notation,

R2W 3 = a

∫ δ

0

rw3 dr, (4.22)

R2W 4 = b

∫ δ

0

rw4 dr, (4.23)
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R2W 2G′ = c

∫ δ

0

rw2g′ dr, (4.24)

where a, b and c are normalization constants to be defined later.
In the hypothesis of full self-similarity of the confined flow (i.e. profiles of velocity,

buoyancy and turbulent shear stress are of similar form at all distances from the
source), the shape functions do not depend on z and the conservation equations read

d

dz
R2W 3 = 2aR2WG′I1 + aRW 3I2, (4.25)

d

dz
R2W 4 = 3bR2W 2G′I5 +

3

2
bRW 4I6, (4.26)

d

dz
R2WG′ = cR2G′2I3 +

1

2
cRW 2G′I4. (4.27)

The hypothesis of self-similarity of the profiles could be relaxed to consider self-
similarity drift as in Kaminski et al. (2005). We will see however that the agreement
between model predictions and experimental data does not require such a detailed
treatment for now. From the previous equations one may deduce the conservation
equations for the (top-hat) mass, momentum and buoyancy fluxes,

d

dz
R2W = 2RW

[
3

2
(aI2 − bI6) + sign(G′)

3 (aI1 − bI5)

Fr2

]
, (4.28)

d

dz
R2W 2 = R2G′

[
(4aI1 − 3bI5) + sign(G′)

(
2aI2 − 3b

2
I6

)
Fr2

]
, (4.29)

d

dz
R2WG′ =

R2G′2

W
(cI3 + 2aI1 − 3bI5) + RWG′

(
c

4
I4 + aI2 − b

2
I6

)
, (4.30)

where Fr =W/
√

R|G′| is the local Froude number. The question of the choice of the
normalization constants a, b and c has been discussed by Fox (1970) and Morton
(1971) for a non-buoyant jet, and by Kaminski et al. (2005) for a jet with arbitrary
buoyancy. For the present case of a turbulent fountain, we choose these constants
first to recover a conservation equation of momentum flux identical to the one used
in the formalism by Morton et al. (1956), a = (3bI6)/4I2 = (1 − 3bI5)/4I1. We then
impose the additional condition c = − bI6/I4, which yields

d

dz
R2W = 2RW

[
Cf

2
− sign(G′)

(
1 − 1

Af

)
1

Fr2

]
, (4.31)

d

dz
R2W 2 = R2G′, (4.32)

d

dz
R2WG′ = kR2WS, (4.33)

where

S =
G′2

W 2
(4.34)

has the same dimensions as a stratification parameter (Carazzo et al. 2008b). This
set of equations is similar but not identical to the one used in our previous studies
(Kaminski et al. 2005; Carazzo et al. 2006, 2008b). Cf , Af and k are combinations
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of the integral profiles and emerge as the key parameters governing the model:

Cf =
I2I6

4 (I2I5 − I1I6)
, (4.35)

Af =
4 (I1I6 − I2I5)

7I1I6 − 8I2I5

, (4.36)

k = 1 +
3I1I4I6 + 2I2I3I6

6 (I2I4I5 − I1I4I6)
. (4.37)

In this ‘confined’ top-hat formalism, the mass conservation equation gives an explicit
expression for the entrainment coefficient,

αe ≡ Cf

2
− sign(G′)

(
1 − 1

Af

)
1

Fr2
, (4.38)

whereas the conservation equation of buoyancy flux involves a coefficient k quantifying
the buoyancy transfer between the up- and down-flows. Although other choices for the
normalization constants a, b and c would have led to slightly different sets of equations
equally valid mathematically, the conditions we retained allow a clear interpretation
of the dynamics of a steady-state fountain. Because the down-flow entrains fluid from
the environment, the up-flow is surrounded by a stratified environment. Contrary to
the classical case of a buoyant plume rising into an environment whose density is
decreasing with the distance from the source, the confined up-flow is rising into
an environment whose density is increasing with the distance from the source.
Thus, the negative buoyancy flux should increase towards zero (i.e. become less
negative) as a function of increasing z. This statement requires that k > 0. Exact
analytical expressions for the various integral parameters are presently out of reach.
We thus used the laboratory measurements of velocity, buoyancy and turbulent
shear stress profiles made by Cresswell & Szczepura (1993) to evaluate the six
integrals and hence to estimate our three governing parameters (figure 6). We obtain
that Cf =0.170 ± 0.040, Af = 0.244 ± 0.086 and k = 8.4 ± 3.5. Figure 7 shows the
predictions of our confined top-hat model for the steady-state heights using the
values inferred from Cresswell & Szczepura (1993). Although good agreement between
the theoretical predictions and experimental results is observed at low and intermediate
Froude numbers, a discrepancy remains for large Froude numbers. One may note
that the experiment of Cresswell & Szczepura (1993) was performed at low Froude
number (i.e. Fr0 = 3.2) for which our new model provides satisfying predictions of
steady-state height. The discrepancy at large Froude numbers could be interpreted as
an evolution of the dynamic similarity of the flow as a function of the distance from
the source (Carazzo et al. 2006). As the uncertainties on the values of Cf , Af and k

are quite large, ∼24 %, ∼35 % and ∼42 %, respectively, we investigate the effect of
their variations by performing a sensitivity analysis.

The complexity of the explicit expression for Cf , Af and k make their precise
interpretation quite difficult. Some insight can be gained by considering the evolution
of the set of equations when buoyancy becomes negligible, i.e. when Fr → ∞. At
very large Froude number, the influence on the down-flow will tend to vanish and
the ‘confined’ top-hat will tend to mimic the evolution of a pure jet (Fr → ∞). In
that case, Cf will be equivalent to the entrainment coefficient for pure jets, i.e. the
parameter C defined in Kaminski et al. (2005) and introduced previously here in (3.1)
and (3.3). We thus consider that Cf quantifies the fraction of kinetic energy in the flow
available for turbulent entrainment. A sensitivity analysis of this parameter within
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Figure 6. Radial profiles of the mean vertical velocity (up-flow, w/wm > 0; down-flow,
w/wm < 0), measured by Cresswell & Szczepura (1993) at z/R0 = 0 (�), z/R0 = 2 (�), z/R0 = 4
( ) and z/R0 = 6 (�). The solid line gives the best fit profile.
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Figure 7. Comparison of experimental dimensionless steady-state heights with the theoretical
prediction using our new model with Cf = 0.170, Af = 0.244 and k = 8.4 for a Poiseuille flow
(dashed line) and a ‘top-hat’ flow (solid line) at the source. The symbols are the same as in
figure 2.
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Figure 8. Comparison of experimental dimensionless steady-state heights with the theoretical
prediction using our new model with Cf = 0.210, Af = 0.244 and k = 8.4 (dashed line),
Cf = 0.130, Af = 0.244 and k = 8.4 (dotted line) for a ‘top-hat’ flow at the source. The symbols
are the same as in figure 2.

the error bars reveals that its exact value does not strongly influence the theoretical
predictions (figure 8). For the present purpose, we therefore use Cf = 0.170 as a
universal constant.

By analogy with the formalism introduced in Kaminski et al. (2005), we also propose
that Af encompasses the influence of the relative shapes of velocity, buoyancy and
turbulent stress profiles on the transfer of gravitational energy to turbulent stress.
The difference between Af and the parameter A introduced in Kaminski et al. (2005)
and in (3.1) and (3.2) is an explicit dependence of Af on the turbulent shear stress
profile, whereas A depends only on the velocity and buoyancy profiles. This can be
interpreted to reflect stronger coupling between the flow variables in the up-flow due
to the ‘confinement’ of the profiles by the down-flow at r = δ. The positive value of Af

implies that negative buoyancy reduces entrainment, as in Kaminski et al. (2005). As
for Cf , a sensitivity analysis of Af shows that this parameter only slightly influences
theoretical predictions (figure 9). For the present purpose, we therefore choose the
value deduced from the literature Af = 0.244 as a universal constant.

The interpretation of k is more difficult. The positive value obtained is consistent
with the gain of buoyancy flux due to the entrainment of some fluid from the down-
flow whose density is increasing with the distance from the source (i.e. decreasing
from the steady-state height due to mixing with environmental fluid). One might have
expected that a full description of the down-flow would be necessary in order to
quantify the buoyancy changes induced in the up-flow by mixing with the down-flow.
Based on the hypothesis of a self-similar flow, our confined top-hat model does not
however require such a treatment: the effect of the down-flow is encompassed in
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Figure 9. Comparison of experimental dimensionless steady-state heights with the theoretical
prediction using our new model with Cf = 0.170, Af = 0.185 and k = 8.4 (dashed line),
Cf = 0.170, Af = 0.357 and k = 8.4 (dotted line) for a ‘top-hat’ flow at the source. The symbols
are the same as in figure 2.

the constant k whose value reflects the confinement of the profiles by the down-
flow. Figure 10 suggests however that the value of k strongly influences theoretical
predictions, and shows that good agreement between the model and the measurements
can be obtained at large Froude numbers for values of k towards the upper bound
of the error bar. In the absence of experimental constraints on k at large distance
from the source, we assume that this parameter may slightly evolve from a value in
the lower bound of the error bar to another one in the upper bound as a function of
the downstream distance from the source.

Figure 11 shows the predictions of our confined top-hat model for the steady-state
height of a turbulent fountain as a function of the source Froude number. The
agreement between theoretical predictions – based on the average values of Af , Cf

deduced from the literature and best fit values for k ranging within those obtained
from the integral profiles – and the experimental results at different Froude numbers,
validate the approach, and in particular the hypothesis of self-similarity. Beyond an
improved quantitative prediction of zss , our new formulation provides a qualitative
interpretation of the origin of the variation of zm/zss as a function of the Froude
number. During the initial rise, the flow behaves like a negatively buoyant jet and the
maximum height scales with α−1/2

m M
3/4
0 B

−1/2
0 (Turner 1966), where B0 = |g′

0|W0R
2
0 is the

source (positive) buoyancy flux. In the steady-state regime, the following dimensional
argument zss ∼ α−1/2

ss B
1/4
0 S−3/8 can be used to reduce (4.31)–(4.33) to their simplest

non-dimensional form, in the same manner as Morton et al. (1956) for buoyant plumes
rising in a stratified environment. Replacing S in terms of source fluxes (= B2

0/M
2
0 ),
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k = 4.9 k = 11.9

z s
s/

R
0

1

10

102

103

10310210

Fr0

Figure 10. Comparison of experimental dimensionless steady-state heights with the theoretical
prediction using our new model with Cf = 0.170, Af = 0.244 and k = 11.9 (dashed line),
Cf = 0.170, Af = 0.244 and k = 4.9 (dotted line) for a ‘top-hat’ flow at the source. The symbols
are the same as in figure 2.
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Figure 11. Comparison of experimental dimensionless steady-state heights with the theoretical
prediction using our new model with Cf = 0.170, Af = 0.244 and the value of k that best fits
the data, k = 8 for a Poiseuille flow (dashed line) and k = 14 for a ‘top-hat’ flow (solid line) at
the source. The symbols are the same as in figure 2.
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Figure 12. Laboratory measurements of maximum (�) and steady-state (�) fountain heights
as a function of the source Froude number. Dotted and dashed lines correspond to linear best
fits for maximum and steady-state heights, respectively. The ratio of the slopes of the dotted
and dashed lines gives a value for zm/zss of 1.29 ± 0.02.

the ratio zm/zss scales with

zm

zss

∝
√

αss

αm

, (4.39)

where αm and αss are the values of the entrainment coefficient during the initial stage
(defined in (3.1)) and for the steady-state regime (defined in (4.38)), respectively. For
highly forced fountains, for which Fr tends to infinity (or Ri → 0), αss tends to Cf and
αm tends to C. As Cf is larger than C, entrainment is larger in steady-state fountains,
leading to a smaller height for the fountain (i.e. zm > zss), as observed. For very weak
fountains, for which Fr tends to 0 (or Ri → ∞), entrainment is much reduced (i.e.
αss and αm ∼ 0), and the height depends only on the initial parameter (Kaye & Hunt
2006), which yields zm = zss , as observed.

5. Conclusions
In order to achieve a better quantitative prediction of the dynamics of turbulent

fountains as a function of their source Froude number, we propose a new top-hat
model for the initial rise and steady-state behaviour of axisymmetrical fountains.
Good agreement between the model and the experimental data on the initial rise
of the fountains is achieved only when taking into account two refinements of the
classical Morton et al. (1956) model: (i) the reduction of the entrainment process as a
function of increasing negative buoyancy, and (ii) the influence of the source Reynolds
number on the effective momentum flux at the source. For the case of steady-state
fountains, previous models required the calculation of both the central up-flow and of
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R0 Q0 W0 g′
0 zm/R0 zm/R0 Fr Re

Experiment (cm) (g s−1) (m s−1) (m s−2) – – – –

1 0.455 18.3 0.28 0.36 24.6 15.0 6.7 1280
2 0.455 24.0 0.37 0.36 28.3 19.0 9.1 1680
3 0.455 30.6 0.47 0.36 34.2 26.3 11.6 2145
4 0.2 2.1 0.17 0.41 14.8 13.3 5.9 335
5 0.2 5.2 0.41 0.41 51.3 36.0 14.5 830
6 0.1 2.7 0.86 0.41 160.3 112.7 42.6 860
7 0.1 2.0 0.64 0.41 120.9 94.8 31.6 640
8 0.1 1.1 0.35 0.41 63.0 45.1 17.4 350
9 0.1 4.3 1.37 0.41 223.2 183.0 67.9 1370

Table 1. Experimental conditions at the source and measured heights. Q0 = ρ0πW0R
2
0 is the

source mass flux, with ρ0 = 998.0 kg m−3 for all the experiments.

the annular down-flow, with the introduction of many free parameters. We developed
instead a ‘confined’ version of the top-hat formalism that allows the calculation
of the down-flow without an explicit characterization of the down-flow. The effect
of the down-flow is described by the parameter k whose value is constrained by
experimentally measured profiles. More careful laboratory measurements on profiles,
including turbulent shear stress which is often omitted (Mizushina et al. 1982), will
help to better constrain the key parameters of the model and their possible evolution
to a state of self-similarity. The new model presented in this paper allows a good fit
of experimental data and explains the systematic decrease of the ratio between the
initial and steady-state heights of fountains with increasing Froude number in terms
of the evolution of entrainment as a function of buoyancy.

G. Carazzo was supported by CIFAR, NSERC and a PIMS post-doctoral
fellowship (CRG on Geophysical and Complex Fluid Dynamics). The contribution
of E. Kaminski and S. Tait to this work is IPGP contribution 2616.

Appendix. Laboratory experiments
The measurements of laboratory fountain heights used here have been obtained

using the experimental apparatus described in Kaminski et al. (2005). A turbulent jet
of fresh water was injected downwards into a 45 cm × 45 cm × 45 cm tank containing
salt water of varying density. The flow rate was controlled with a valve and measured
using a weighing machine and a timer. The source fresh water was injected through a
constriction copper pipe with varying inner radii (0.1, 0.2 and 0.455 cm). The ‘collapse’
of the fountain to the top of the tank was filmed using a video camera in order to
measure the initial and the steady-state fountain heights (figure 12). The conditions
and measurements for each experiment are given in table 1.
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